Moving Average Filter vs Blackmann Filter

Nathan Kim

January 2025

1 Project Description

The goal of this project is to implement a noise-reduction digital signal process-
ing algorithm optimized for embedded systems, with a focus on performance,
efficiency, and practical implementation in C. The project also analyzes the
trade-offs and benefits of the chosen algorithm in terms of computational com-
plexity, accuracy, and real-world usability.

The algorithm selected for this project is the moving average filter, a
fundamental tool in digital signal processing. Its performance will be compared
against more sophisticated filters, such as the Gaussian filter and the Black-
man filter, to highlight its strengths and limitations in different contexts.

The moving average filter works by averaging a specified number of points
from the input signal to produce each point in the output signal. Mathemati-
cally, the filter is represented as:

M

1
y[n] = N+ M+l k;Nw[n — k]

Mathematical Representation of the Moving Average Filter.

Here, M + N +1 represents the number of points included in the average, x is
the input signal, and y is the resulting output signal. The moving average filter
is equivalent to a convolution with a rectangular pulse, where the pulse has
an area of one and a width corresponding to the number of samples averaged.
Intuitively, the moving average filter smooths out signals by averaging multiple
noisy samples, effectively reducing random variations. A simple, unweighted
average is optimal in this context because all samples contribute equally to the
noise, making no single sample more significant than another.

Key Strengths of the Moving Average Filter:

e Only addition and subtraction operations are needed; no multiplication is
required.

e It has simple logic.

e [t requires minimal memory, as seen in the code.



In the following sections, the performance of this filter will be analyzed in
both the time and frequency domains. Its trade-offs, including computational
complexity and smoothing effects, will be discussed, along with comparisons to
more advanced filters.

2 Filter Results and Analysis

The frequency response of the moving average filter is shown below. Figure 2
demonstrates the original generated noisy signal compared to the clean signal.
Figure 3 overlays the filtered signal onto the original noise signal to show the
smoothing effect. Figure 4 shows the filter’s magnitude response in the frequency
domain, calculated as the Fourier transform of the rectangular pulse:

, 1 sin[w(M 4+ N+1)/2] v
H(e) = Jwl(N—-M)/2]
()= Nars1 sin(w/2) ¢

Frequency Response Equation.

2.1 Frequency Response Analysis

The frequency response, as seen in Figure 4, reveals that the moving average
filter is relatively ineffective as a low-pass filter due to its slow roll-off and poor
attenuation of higher frequencies. However, as the number of samples averaged
increases, the filter performs better by smoothing the signal more effectively
and attenuating noise, as seen in Figures 5 through 7.

Analysis Across Figures: Both the time and frequency domain results
highlight the trade-offs of the moving average filter. While the filter effectively
smooths signals, its frequency response shows that it is not an ideal low-pass
filter due to its limited ability to attenuate high frequencies. Larger sample win-
dows improve noise reduction (visible in Figures 6 and 7) but increase compu-
tational complexity and result in over-smoothing, which might cause the signal
to lose its original characteristics.

3 Efficient Implementation on Embedded Sys-
tems

One of the key advantages of the moving average filter is its simplicity and com-
putational efficiency, particularly in the context of embedded systems. Using
overlapping calculations between consecutive output points, the filter can be im-
plemented using a recursive approach, significantly improving its performance.
Consider the calculation of two adjacent output points, y[50] and y[51]:

y[50] = x[47] + 2[48] 4+ x[49] + 2[50] + x[51] + 2[52] 4 x[53],

y[51] = x[48] + z[49] + z[50] + x[51] + z[52] + x[53] + x[54].



Generated Signal with Noise

Maisy Signal
Clean Signal | |

Amplitude

-4 i B I I
0 1 £ 3 4 5

Time (seconds)

Figure 1: Generated Signal with Noise (Noisy and Clean Signals)

Observing that many terms overlap between consecutive calculations, the result
can be updated recursively:

y[51] = y[50] + x[54] — «[47].

3.1 Time Complexity Analysis

The recursive implementation reduces computational overhead compared to the
naive approach:

e Non-optimized Version: In the naive implementation, each output
value requires summing M samples, and this operation is repeated N
times (for N output points). This results in a time complexity of:

O(M - N).

e Optimized (Recursive) Version: Each output point is computed using
three operations: adding the incoming sample, subtracting the outgoing
sample, and dividing by M. This results in a time complexity of:

O(N).

The dependency on M is eliminated because the sum is updated incrementally,
making the algorithm highly efficient for large window sizes.



Time Domain: Original vs Filtered Signal

— Original Signal .
_Fi\lered _Sigrlal ] 4

Amplitude
(=]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample Index
Frequency Domain: Magnitude Response of Moving Average Filter

0 L I I I L | L
0 0.06 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized Frequency (cycles/sample)

Figure 2: Time Domain (Original vs Filtered Signal) with Frequency Response
for 3-Point Filter

3.2 Code Implementations

The following figures illustrate the algorithm implemented in C and MATLAB
for both the naive and optimized versions:



Time Domain: Original vs Filheren@ A E| o @ Q 4}

Amplitude

Original Signal
Filtered Signal
o .

Frequency Domain: Magnitude Response of Moving Average Filter

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample Index

08

0.6

H(f)

02r

Figure 3: Time Domain (Original vs Filtered Signal) with Frequency Response

005 01 015 02 0325 03 035 04 045 0.5
Normalized Frequency (cycles/sample)

for 31-Point Filter

Time Domain: Original vs Filtered Signal

Amplitude

0.8

H(f)l

—04

0.2

Figure 4: Time Domain (Original vs Filtered Signal) with Frequency Response

Original Signal
Filtered Signal

]

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample Index
Frequency Domain: Magnitude Response of Moving Average Filter

0.6

_hww‘ —]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

Normalized Frequency (cycles/sample)

for 101-Point Filter



#include <¢stdio.h>
#include <math.h>

#define N 5000 // Number of samples
#define M 101 // Window size

// Normal Moving Average Filter (O(N*M))
void moving_average_normal(float *input, float *output, int num_samples, int window_size) {
int n = (window_size - 1) / 2;
for (int i = n; i < num_samples - nj i++) {
float sum = ©.0;
for (int j = -n; j <= n; j++) {
sum += input[i + j);
}

output[i] = sum / window_size;
}

// Optimized Recursive Moving Average Filter (O(N))

void moving_average_recursive(float *input, float *output, int num_samples, int window_size) {
int n = (window_size - 1) / 2;
float accumulator = 8.8;

/f Initialize accumulator with the first "window_size’ points
for (int i = 8; i ¢ window_size; i++) {
accumulator += input[i];

}

output[n] = accumulator / window_size;

// sliding window calculation

for (int i = n + 1; i < num_samples - n; i++) {

accumulator = accumulator - input[i - n - 1] + input[i + n];
output[i] = accumulator / window_size;

Figure 5: C Implementation of the Moving Average Filter.

% Apply moving average filter (0(n”2) approach)
for i = n+1:N-n % 51:4950

y(i) = sum(x(i-n:i+n)) / window_size;

end

Figure 6: Naive Implementation in MATLAB.

% Optimized (O(n) approach)
% First, grab y[n+l1] (first element of the result based on window)
= 9_:
for i = 1:M % 1 to 101
acc = acc + x(1i);
end
y(n+l) = acc / 181; % Save the first filtered value

% Update 'y’ using the sliding window approach

for i = n+2:(N-n) % From the second filtered value onward
acc = acc - x(i-n-1) + x(i+n);
y(i) = acc / 1e1;

end

Figure 7: Optimized Implementation in MATLAB.



4 Comparison Between Moving Average and Black-
man Filters

To better understand the trade-offs between the moving average filter and the
Blackman filter, we analyze their time and frequency domain performance, com-
putational complexities, and implementation intricacies. The table below high-
lights their key differences and use cases.

4.1 Performance Analysis

The time-domain plots (Figure 8) reveal that the Blackman filter preserves the
signal’s shape more effectively, with less oversmoothing compared to the Moving
Average filter. However, this precision comes at a cost of higher computational
complexity due to convolution operations.

In the frequency domain, the Blackman filter exhibits superior low-pass char-
acteristics, with sharper roll-off and stronger sidelobe attenuation (Figure 9).
The Moving Average filter, while computationally faster, has a slower roll-off
and poor attenuation of high-frequency noise, making it less effective in appli-
cations requiring precise frequency-domain filtering.

Time Domain: Moving Average Filter
T

Nois,

. Sgnal
- Moving Avg Fitered
I
o ) Ll | | ‘ ‘
| | | ! |
L i " | il ! | ! " 1 Y
1 - I W W ! 1 j i i) | ln

1 1 1 1 1 1 1
25 3 35 4 45 5
Time (s)

Amplitude
=

o

Time Domain: Blackman Filter

Amplitude

@

25 3 35
Time (s)

Figure 8: Time Domain: Comparison of Moving Average and Blackman Filters

Frequency Response Comparison of Blackmann and Moving Average

o 50 100 150 200 250 300 350 400
Frequency (Hz)

Figure 9: Frequency Response: Moving Average vs. Blackman Filter (Un-
zoomed)



4.2 Computational Complexity Comparison

The Moving Average filter uses a recursive algorithm, making it computationally
efficient, while the Blackman filter relies on convolution, which is computation-

ally intensive.

Moving Average Filter Pseudocode:

Initialize accumulator to O

For each point:

Update accumulator: subtract outgoing sample, add incoming sample
Compute average: accumulator / window_size

Blackman Filter Pseudocode:

Generate Blackman coefficients: w = blackman(window_size)
Normalize coefficients: w = w / sum(w)

For each point:

Perform convolution: filtered_signal = conv(signal, w, ’same’)

Convolution is more computationally complex than simple addition. The
Blackman filter requires O(N - M) time, where M is the filter length, since M
samples must be summed for every output NNV.

4.3 Applications and Use Cases

Feature

Moving Average Filter

Blackman Filter

Computational Speed

Computationally efficient due to
recursive updates; ideal for real-
time applications.

Computationally slower due to
convolution and weighting coef-
ficients.

Noise Reduction

Effective for random noise but
less precise.

Superior noise reduction with
minimal spectral leakage.

Frequency Filtering

Poor low-pass characteristics;

slow roll-off.

Excellent low-pass characteris-
tics; sharp roll-off and strong
sidelobe attenuation.

Time Domain

Oversmooths signals, losing de-
tails.

Retains finer details due to ad-
vanced weighting.

Implementation Com-
plexity

Simple; relies on basic addition
and subtraction.

Moderate; requires generating
and normalizing coefficients.

Applications

Real-time, resource-constrained
systems needing quick smooth-
ing.

High-precision tasks requiring
strong frequency-domain filter-
ing.

Table 1: Comparison Between Moving Average and Blackman Filters




